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SECTION 1 

INTRODUCTION 

Vibration issues and the associated fatigue accumulation often play a critical role 
in the design of structural components. This observation is, in particular, true in the 
context of future supersonic/hypersonic vehicles such as the planned National Aerospace 
Space Plane (NASP) the skin of which will be subjected to especially harsh operating 
conditions, e.g. surface temperatures possibly exceeding 3000°F, severe acoustic loading 
from the engine exhaust, etc. The design of the surface panels appears in this light quite 
challenging especially since it is not only required to consider each of these 
environmental factors by itself but it is also necessary to account for their combined 
effects. As an example of loading interaction, consider the response of panels to the 
thermal and acoustic excitations mentioned above and note first that the increase of 
surface temperature will produce compressive stresses in the panels since the extension 
that they would naturally undergo is prevented by their supports. Further, the magnitude 
of these stresses, in direct relation to the very large temperature changes, is likely to 
produce the buckling of some panels. 

To sustain such high surface temperatures, specially designed structural materials, 
such as ceramic matrix composites, will have to be used. The refractory nature of these 
materials will prevent the heat conduction through the panel and thus will lead to a severe 
temperature gradient in that direction. The corresponding compressive stresses will exhibit 
a similar sharp variation through the thickness which will result not only in a normal force 
but also in a moment that increases the likelihood of buckling (see Ng, 1988, 1989, Lee, 
1993, 1997, Vaicaitis, 1994, Moorthy et al. 1995) 

Of primary importance in the fatigue damage accumulation process is the cycling 
of the stresses and, thus, buckling represents a specially acute problem if the panel 
oscillates from its buckled state to its normal configuration, or from one buckled state to 
another. This latter mechanism, often referred to as snap-through or oil-canning, is 
especially likely when the panel is subjected, in addition to the thermal loading, to a 
random transverse excitation such as the acoustic loading from the engine exhaust. The 
corresponding response of the panel consists of random fluctuations around the buckled 
position but also often includes large excursions from this configuration, so large in fact 
that the panel may snap-through to the other buckled state. Accordingly, the goal of the 
present investigation is the formulation and preliminary assessment of a methodology for 
the prediction of the fatigue damage accumulated in a panel due to both fluctuations 
around the buckled states and the snap-throughs. 



SECTION 2 
PANEL STRUCTURAL DYNAMIC MODELING 

The structural dynamic modeling of the panel can be decomposed into two major 
parts: the composite plate modeling and the derivation of a simplified, one-mode, model 
both of which are discussed below. 

2.1 Composite Plate Modeling 
Recent efforts in the structural dynamics of composite plates (see for example 

Chattopadhyay and Gu, 1994) have emphasized the appropriateness of the higher order 
plate theory as proposed by Reddy (1987). Specifically, the displacement field inside the 
plate are selected in the form (see Fig. 2.1) 

material coordinate system 

orthotropic layer 

Figure 2.1 Composite plate modeling 

dwn (x, y, i) 
u(x, y, z, t) = u0 (x, y,t)-z + z 

dx 

v(x,y,z,t) = v0(x,y,t)-z 
dw0(x,y,t) 

dy 
+ z 1- 

4|V 
3U. 

<P«(*».V>0 

<PV(*>JM) 

(1) 

(2) 

w(x,y,z,t)=w0(x,y,t) (3) 
where u, v, and w are the displacements along the x, y, and z axes, respectively and h 
denotes the plate thickness. Before proceeding further, it is important to assess the origin 
of each term present in the above equations. 

First, u0(x, v, /) and vQ(x, y, t) represent the time-varying in-plane displacements 
of the mid-plane. These displacements are produced by both the thermal effects, which 
include an overall increase of the panel temperature and temperature gradients along and 
across the plate, and the mid-plane stretch associated with the large transverse 
displacements. Note that both of these effects play fundamental roles in the present 
buckling/postbuckling analysis and thus must absolutely be included in the formulation of 
the plate equations. Clearly, the thermal effects induce compressive in-plane stresses that 



are reflected by an apparent softening of the plate in the transverse direction and 
consequently facilitate the plate buckling. Once buckling is initiated, the transverse 
displacements rapidly increase leading to a stretching of the midplate which restores the 
stiffness of the panel and allows the existence of a stable buckled equilibrium position. 
Clearly then, one can formally write 

u0=u0(T,w0) and v0=v0(7\w0) (4) 

where the dependence of w0 
and v0 on w0 IS intrinsically nonlinear as it describes the 

mid-plane stretching, a nonlinear effect of the transverse motions. 
The next group of terms present in the in-plane displacements consists of 

z SwQ(x,y,t) and   z dw0{x,y,t) ^.^ ^       ^ recognized as the first order plate 

dx dy 
bending components and are linear in the plate transverse coordinate. Completing the 

4 
formulation of    u(x,y,t)  and   v(x,y,t)  are the terms    z 1- (pwfc^O* 

and z cpv(x, v, t)    which   represent   the   higher   order   plate   bending 

corrections. Generally speaking, these components take the form g(z) cp(x, y, t) and are 
designed to account for a nonlinear distribution of the displacements across the thickness. 

The   selection   of  the   function   H(z),   H{z)-z 
h. 

and   the   physical 

interpretation of the functions cpM(x, y,t) andcpv(x, y,i) will be discussed in the next 
section in connection with the strains. Clearly, these terms are primarily produced by the 
transverse motions and thus 

(?u=(PuM and (Pv=(Pv(wo) • (5) 
It will be shown, under the assumption of a symmetric composite layering, that cpM and 

cpv exhibit a linear functional dependence with respect to w0. 
Considering finally the transverse displacement, it is seen that the variations of 

this quantity across the thickness have been neglected in accordance with (reasonably) 
thin plate assumptions. Then, w0(x,y,t) denotes the time-dependent transverse 
displacement of the mid-plane, produced by external loading and influenced by the in- 
plane (membrane) stresses as described earlier. 

The next step in the structural dynamic modeling of the panel is the introduction 
of the strains-displacements relationships. The presence of an in-plane displacement field 

of order (w0)°, i.e. the one corresponding to the thermal effects only, requires the 
consideration, even for the small amplitude transverse vibration problem, of nonlinear 
terms in the definition of the strains. In the present analysis, it will be assumed that the in- 
plane displacements are substantially smaller than their transverse counterparts so that the 
second order terms in u and v are neglected but those in w are retained. This approach 
yields the von Karman strains 
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Introducing the displacement field given by Eq. (l)-(3) in Eq. (6) yields the expressions 
of the strains in terms of the five basic unknowns, i.e. u0(x, y, t), v0(x, y, t), w0(x, y, t), 

(pu(x,y,t), and <pv(x,y,t). In this respect, note at the contrary of first order bending 

theory, that the shears strains yxz and yyz do not vanish inside the plate. In fact, one has 

y xz 1-4 
V' u (pu{x,y,t)    and   yyz = 1-4 

f7\ 

\nj 
<PV(*>JM)        (7) 

xz from which it is then seen that the function g(z) was selected so that the shear strains y 

h 
and yyz vanish at both the top and the bottom of the plate (z = ± -) as required by the no 

shear stress boundary conditions. Further, Eq. (7) implies that <pu(x, y, t) and cpv(x, v, t) 

are in fact directly related to the mid-plane (z = 0) shears yxz and yyz. The higher order 

plate bending displacement field given by Eq. (l)-(3) thus includes shear effects. 
Turning now to the definition of the stresses, it will be assumed that the behavior 

of the panel remains linearly elastic during its entire fatigue life. Modeling further each 
layer of the composite as an orthotropic material leads to the stress-strain relationships 

a' = < 

°v sx< - ax< T 

ay Sy - ay T 

Gz , = Q. &z 
= Q£' -Qq!T 

Tx'z £x'z 

Ty'z £y'z 

Jx'y' £x<y 

(8) 

where (x', y\ z) denotes the frame of reference for each layer with x' aligned with the 

fibers. Further, ax> and cy represent the coefficients of thermal expansion along and 

across fibers and T = T(x, y, z) is the local temperature. Finally, sxy = 2 yxy, 

s*fr=2 rx'z. 
and similarly syz = 2 yyz, and Q denotes the symmetric elastic constant -xz 

matrix of the orthotropic layer, i.e. 
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Since the strains are defined in the global axes (x, y, z), see Eq. (6), it is necessary to 
rewrite Eq. (8) in that frame of reference. Specifically, it is found that 

q = R{h)°: = R{h)QR{-h)z-R{h)Q*'T (io) 

where R(tyk) denotes the 6x6 matrix describing the rotation from (x'; y\ z) to (x,y, z) by 

the ply angle fa . That is, 

*(♦*) = 

ml nl 0 -2m n 0 0 

n2 m 0 2m n 0 0 

0 0 1 0 0 0 

mn -mn 0 2        2 m   -n 0 0 

0 0 0 0 m -n 

0 0 0 0 n m 

(11) 

where m - cost)^ and n = sin<j>£. For simplicity of notation, Eq. (10) will be rewritten as 

a=Q[s-aT] (12) 

where 

Q = Rfak)QR(-h) ^      aT = [R{-fkp a'T= Rfak)c?T     (13) 
Equations  (l)-(3),  (6),  and (8)-(13) provide a complete description of the 

displacement, strain, and stress fields in terms of the functions u0(x,y,t), v0(x, y, t), 

w0(x,y,t), (pu(x,y,t), and <pv(x,y,t). Then, to obtain the set of governing equations 
for these unknowns, Hamilton's principle can be used, i.e. 

h 
5\{T-V + Wext)dt = 0 (14) 

where T, V, and Wext denote respectively the kinetic and potential energies and the work 
done by the external (acoustic) loading. These quantities are readily obtained from the 
displacement, strain, and stress fields as 

1 a b   h/2    , \ 
T = -\\    jp[ü2+v2+w2)dzdydx (15) 

0 0 -h/2 

1 a b 

o o 
I faVsr]* 
k=\ 

dy dx (16) 



where np represents the number of plies and zk, zk+l are the transverse coordinates of 

the bottom and top of the kth ply. Finally, the external work is defined by its virtual 
counterpart 

a b 

^ext = \\ P(
X

> y> 05w dy & (1?) 
0 0 

where p(x, y, t) denotes the acoustic pressure exerted on the surface of the panel. 
The application of Hamilton's principle, Eq. (14), to the above quantities yields a 

set of five nonlinear coupled partial differential equations for the quantities u0(x,y,t), 

v0{x,y,t), w0(x,y,t), <pu{x,y,t), and yv(x,y,t) the solution of which represents a 

serious challenge even in the case of a deterministic loading p(x, y, t). In the presence of 
random acoustic pressure fluctuations, the determination of the statistical description, e.g. 
probability density functions, of the five variables is beyond current capabilities and a 
simplification of the model must be achieved. 

2.2 Derivation of Simplified Models 
Several methods are available for the derivation of simplified models for 

nonlinear structural dynamic problems. One standard approach is to proceed as for linear 
systems and express the unknown displacements fields in a limited modal-type 
expansion. In the present context, this strategy would lead to the approximation 

m 
z=5>/(0vM (is) 

where 
Z7 = [u0{x,y,t),v0(x,y,t),w0(x,y,t),yu{x,y,t),q>v{x,y,t)] (19) 

and \\i(x, y) denotes a five-component vector of specified functions of the spatial 

coordinates x and y. Finally, the time-dependence of the displacement fields is captured 
by the unknown variables qf(t). When the governing equations for Z are linear or 

weakly nonlinear, the number of modes m can be selected to be substantially smaller than 
the dimension of the vector Z and a sometime dramatic simplification of the problem is 
accomplished. A single-mode (m=\) approximation is especially attractive as it reduces 
the problem to a single, nonlinear, ordinary differential equation. Unfortunately, in this 
low order approximation the components of the vector Z are linearly dependent on each 
other which is not acceptable in the present context since the in-plane displacements 
u0(x, y, t) and v0(x, y, t) involve the transverse deflections w0{x, y, t) only through the 

mid-plane stretching, a purely nonlinear effect. 
The derivation of a single-mode approximation of the present problem must then 

be accomplished differently. Specifically, it was already argued in connection with the 
selection of the von Karman strains that the in-plane displacements are expected to be 
substantially smaller than their transverse counterparts. Thus, the contribution to the 

panel kinetic energy of the terms w2 and v2 should be small and could, in first 
approximation, be neglected. Accordingly, the displacement fields u0(x, v, /), v0(x, y, t), 



yu(x, y, t), and cpv(x, y, t) appear explicitly only in the potential energy and must then 

be selected so that 5 V = 0. Note that the potential energy does not involve any time 

derivatives so that its minimization with respect to u0(x,y,t), v0(x,y,t), yu(x,y,t), 

and (pv(x, y, t) yields a set of four nonlinear, coupled partial differential equations with 
respect to space for these four displacement fields. These equations can be recognized as 
integral versions of the in-plane equilibrium condition for the plate and can be used to 
express (at least approximately) u0(x,y,t), v0(x,y,t), yu(x,y,t), and <pv(x,y,t) in 

terms of the transverse deflection w0(x,y,t). Practically speaking, this procedure 

represents a quasi-static condensation of the plate equations and leads to the single 
unknown field w0(x,y,t) which, following previous arguments (see Eq. (16)-(17)), can 

be sought in the form 
w0 (x, y, t) = q(t) w0 (x, y) (20) 

where w0(x, y) is a specified function. For maximum accuracy, w0(x, y) should closely 

resemble the spatial distribution of the plate transverse deflections and thus can be 
selected as the panel buckling mode shape. Mathematically, this function can be 
expressed as 

wo(^.>;) = ZZam«sin| 
mKX^ 

a m   n v 

sin 
1' nny^ 

(21) 

where a and b are the dimensions of the plate in the x and^ directions, respectively. 
At this point of the investigation, it is assumed that the panel is simply supported 

and thus the function w0 (x, y) should satisfy zero deflection boundary conditions on its 

four sides, i.e. on x = 0, x = a, y = 0, and y = b. These conditions are automatically 
fulfilled by the choice of the sine functions independently of the number of terms in the 
summation. Thus, for simplicity, it will be assumed that 

wo (*> y) =sin 
(rnrrx^ (22) 

a 
The   above   discussion   demonstrates   that   the   determination   of   a   single-mode 
approximation of the panel dynamic behavior can be separated in the following two steps: 
(1) Determination of the functional dependence of u0(x,y,t), v0(x, y,t), q>u(x,y,t), 

and (pv(x, y, t) on w0(x, y, t) 
(2) Determination of the governing equation for the transverse displacement, i.e. #(0. 
Before addressing each of these two aspects of the problem, the following notations are 
first introduced: 
Forces: 

A/2 A/2 A/2 
Ny =   \ar dz My =   \z Gy dz      Py =   \ H(z) ay dz y = x,y   (23) 

-A/2 -A/2 -A/2 
A/2 A/2 A/2 

Nxy=    \txydz Mxy=    \ztxydz Pxy=    \H{z)zxydz (24) 
-A/2 -A/2 -A/2 



N = [NxNy N*yY 
A/2 

RXz=  I 
-A/2 

dH(z) 
dz 

Thermal Loading: 

A/2 

- xz dz      Ryz =    J 
-A/2 

Mxy]
T            l = [px P  P y    xy. 

T (25) 

dH(z) 
 — rV7 dz      R = 

dz      yz y-xz Kyz 
T (26) 

A/2 A/2 
(27) 

A/2 
K* =    \QaTdz M'=    \zQaTdz        P' =    J //(z) g a 7/ Jz 

-A/2 -A/2 -A/2 

where Q is the 3x3 matrix extracted from Q by removing the 3rd, 4th, and 5th 

rows and columns and a is the 3-component vector corresponding similarly to a. 

Strains/Curvatures: 

,0 _  duQ , I 
etc      2 

''own \2 

ÖC v UA y 

/r = 

av   2 

'aV2 

dy      dx 

T 

fdWr^ 

V dx J 

rdwt 
N 

-\T 

dy ) 

d2w0       d w0 d WQ 

dx2 dy2 dxdy 

<!> = [<Pu Pv]1 <fi 
9<Pu      d(Pv      d(Pu   , d(Pv 
dx       dy       dy       dx 

(28) 

(29) 

(30) 

\,z, z2, 
UH{z)^2 

dz 
,zH(z),Hl(z),H(z) Qdz   .    (31) 

Constitutive Matrices: 
A/2  f 

(A,B,C,R,X,W,Z)=   J 
-A/2 

Further, A, B, C, X, W, and Z are the 3x3 matrices extracted from A, B, C, X, W, and 
Z, respectively, by removing the 3rd, 4th, and 5th rows and columns and 

•#44    -#45 

.^45    ^55. 
Relations between force and strain vectors can be derived by multiplying the 

dH(z) 

R = (32) 

constitutive equation, Eq. (12), by 1, z, H(z), and 

panel thickness. Specifically, it is found that 

ä 
M 

P 

R 

dz 
and integrating through the 

A    B    Z    O" [-°1 V 
B    C   X    0 K Mt 

Z   X   W    0 #' I1 

0    0    0    £ .1. 0 

(33) 



2.2.1   Determination   of  the   functional   dependence   of   uQ(x,y,t),   v0(x, y, t), 

<pM(x, y, t), and cpv(x, y, t) on w0(x, y, t) 
Proceeding under the assumption that the kinetic energy associated with the 

displacements/shears u0(x, y, t), vQ(x, y, t), q>u(x, y, t), and q>v(x, y, t) can be neglected 
in comparison with its out-of-plane deflection component, the governing equations for 
these functions derived from Hamilton's principle correspond in fact to the minimization 
of the potential energy alone. Then, the condition 8 V = 0 yields, after some integrations 
by parts, the 4 partial differential equations 

due 
ÖNr     5JV 

dx 
• + ■ 

xy 

By 
= 0 (34) 

8N 
Svr 

xy 

dx 
+ ■ 

dNy 

dy 
= 0 (35) 

Scpu : 
dPv    dP: + xy 

dx       dy 
■*«=o (36) 

8(pv: 
dP„,     8P xy 

dx 
+ ■ y 

dy 
Ryz=0, (37) 

In order to obtain closed form expressions for the displacements/shears uQ(x,y,t), 

v0(x,y,t), <pu(x,y,t), and cpv(x,y,t), it is necessary to specify the temperature 

distribution in the plate. Following Lee (1993), it will be assumed here that 
TJX 7ZV 

T = TQ+SVTQ sin— sin^- + Sg T0 
a       b 

. 2 xx ■ 2xy 1 z 
sin   —sin  —   — 

L        a         b 4J h 
(38) 

where T0 denotes the average plate temperature and Sv and Sg represent measures of 

the temperature gradient along and across the plate, respectively. Then, introduce the 
vectors 

/z/2_ h/2 

v=    [Qadz y_=   jzQadz 
-h/2 -h/2 "-h/2 

-   h/2 
6 = -    \z2 Qadz 

h    J 

h/2 
X=   \H{z)Qadz 

-h/2 

h/2 
// = ■£   jzH(z)Qadz. 

-h/2 

(39) 

Under these assumptions, it is found that 

Nl = 
/M.     ,    /fry 

T0 + 5V TQ sin— sin^ 
TJX 

a ~b 

1 
v + -SgT0 

. 2 nx  . iny    1 
sin   —sin  

a b     4 ¥ (40) 



M' = 
„      „  „,    .  nx  . ny 
TQ + Sv T0 sin— sin— 

a       b 
y + SgT0 

. 2 nx . 2xy   i sin   —sin  
a b     A 

6 (41) 

and 

Pf = 
„      „  „,    .  nx  .  ny 
T0 + Sv TQ sin— sin— 

a       b 
Z + ögTo 

. 2 xx . 2^y sin   —sin  — 
b 

(42) 
a o     4 

Next, it will be assumed, as is often the case, that the panel is composed of 

symmetrically placed layers. Then, it is readily seen that the matrices B, Z, B, Z, and 
vectors  y/  and  x   are identically zero and the in-plane displacements  UQ(X, y,t), 

v0(x, y,t) and out-of-plane shearscp„(x, y,t), and <pv(x, y,t) are uncoupled of each 

other, see Eq. (33)-(37). The determination of these two sets of functions can thus be 
accomplished separately as follows. 

(a) Determination of the in-plane displacements u0(x, y, t), v0(x, y, t) 

The determination of the in-plane displacements u0(x,y,t), v0(x, y, t) is 

accomplished from Eq. (34)-(35) and the reduced constitutive relation Eq. (33), i.e. 

N = Ae0-N(, (43) 
in either of two ways. A first approach is to introduce this expression for the force vector 
N in Eq. (34) and (35) to obtain two coupled partial differential equations for u0(x, y, t), 

VQ(X, y, t) (no time derivatives). Another strategy is to introduce a scalar stress function 

ft(x, y, t) such that (see Lee et al., 1998 for details) 

d y/ 
N, Ny = 

a2 * d y> d2u> 

*        dxdy 
(44) 

8yA '     dx* 
so that the equilibrium equations (34) and (35) are automatically satisfied. Then, the 
function y/(x, y, t) is selected to satisfy the compatibility condition 

v2     (^2    Va2    "\ 
(45) 

d2e°     d2s°7 
—zL- + —4- 

dy< dx' dxdy 

f-a   \ o w 

dxdy 

dzw 

dx' 

dzw 

dy< 

where s®, s®, and s® are the components of the vector s°, see Eq. (28), which are 

related to f(x, y, t) through Eq. (43) and (44). This process results in the 4th order partial 

differential equation for y/(x, y, t) presented by Lee et al. (1998). 
Irrespectively of the approach selected, it is necessary to first establish the 

boundary conditions to be satisfied. In view of the simply supported nature of the plate, it 
could be expected that the in-plane motions of the mid-plane be restricted at the support, 
i.e. 
u (0, v,t) = u(a,y,t) = u (x,0,t) = u (x,b,t) = v(0,y,t) = v{a,y,t) = v(x, 0,t) = v(x,b,t) = 0 

(46) 
Of these 8 boundary conditions, it is particularly important that 

u (0, y,t) = u (a, v, /) = v (x, 0, /) = v {x, b,t) = 0 (47) 
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be satisfied as they correspond to the constraint on the expansion of the plate and thus 
play a fundamental role in the buckling of the plate. The remaining four geometric 
boundary conditions 

u (x, 0,t) = u (x, b,t) = v (0, y,t) = v (a, y,t)= 0 (48) 
represent a lack of sliding along the supports. If necessary for simplicity, they could be 
replaced by their corresponding natural boundary conditions 

rxy (x, 0, t) = rxy {x, b, t) = rxy (0, v, t) = rxy {a, y, t) = 0 (49) 

on the midplane, z = 0. 
The determination of closed form solutions of nonhomogenous partial differential 

equations, such as those for uQ(x, y, t) and v0(x, y, t) or \}/(x, y, t), is conditional on the 

availability of both particular and homogenous solutions. Considering first the former, it 
is seen that the nonhomogenous character of these equations originates with both the 
transverse displacement w0 (x, y, t) and the in-plane temperature variation both of which 

involve trigonometric functions of x/a and y/b. On this basis, a particular solution can be 
sought as a limited Fourier series. On the other hand, the determination of a homogenous 
solution which, after superposition with its particular counterpart, yields the correct 
boundary conditions is in general a daunting task unless the method of separation of 
variables can be used. In this light, it should be noted that 

(i) the Fourier series particular solution for u0(x, y, t) and v0(x, y, t) does not satisfy 

any of the boundary conditions given by Eq. (46) and/or (49) when Ax6 and A26 

do not vanish, 
(ii) the partial differential equations to be solved do not admit a separation of 

variables homogenous solution when A\$ and A2s do not vanish. 

It is then concluded that a closed form solution for the in-plane displacements u0(x, y, t) 

and v0(x, y,i) will be quite difficult to obtain when the two coefficients Al6 and A26 

are non-zero. For this reason, the present analysis will be limited to either symmetric 
angle-ply laminates or cross-ply laminates in both of which the constants A\6 and A2ß 

always vanish. Under this restriction, a bonafide solution, satisfying Eq. (47) and (49), 
can be found as 

/        \ .  2nx . 2nx       2ny - /cm u0(x,y,t) = u0l sin + w02 sin  cos—— (50) 
a ab 

(        \ . Ircy 2nx   . 2ny 
v0(x,v,0 = v0isin-— + v02  cos  sin—— (51) 

b ab 

A^jM^Qo <12 ~v\ T0 ^-(^020 <12 +hl\ <*v Tbjcos^ 2 
- - (52) 

—T" ^221 ^v 7b cos  cos —T 
b2 ab 
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Ny{x,y,t) = C50 q2 -v2 T0 ^-(A20O ^ +^20i Sv r0)cos 
a 

4;r    „       0  „         2nx        2ny 
hl\ ^v M) 

cos  cos 

2nx 

a 

a2   ""■"   v   " a b 

/ \ 47t2      „ r>       rr, • 2/TX .        2jt')/ 
N^ (x, y,t) = - — hi 1 #v T0 sin —- sin 

where 

C50 = 
n 

%a2b2 
A22a

2+A]2b
2 

Qo = 

a 

n 

8a2 b2 
Al2a

2+Anb2 

32b2 

a2    A\\A22~A\2 X 
ni 

^020 - 9 
32a2 

b2   A\\A22~An 

"l 

hu 

42 

42      A\2 

201 

^201 = 

a2 
("2 41- -v\ 42) 

\6n2 A 11 

b2 
(v, 42" ~"2 42) 

\6n' m 

f *       *-^      Uu    A   ^ 

b2      a2 j 
+ v2 

lll      ^12 

\a 

16 n2 Au  | (A-2^12)~^" 
A = ^11^22^12 

*66 

a4   '      a2*2 

(53) 

(54) 

(55) 

(56) 

(57) 

(58) 

2 2/z" 
a 

^200 42 1     «2^22 vl -«2j412 v2 -16^T    ho\A\2 

16     AUA22-A2
2j 

%na Au A
22~

A
n 

Sv T0 

1 n     2      a 
16a 9,r  '     A        AL 

2n AnA22-A 12 

7U22 "1-42 "2)-^221 
^4,r2 

42- 
4;r 

a 

(59) 
2 N\ 

*12 SVT0 

2 2n 
voi=-9   T 

( 
^020 42 

\ 

16    Au A 
\ 

V02 
n     2      b 

q + 

11 ^22 -/112 

1 

(60) 

1    b2An v2 -b
2Al2 v\ -\6n2 Am An x   T  . 0   1, 

%nb 4i 42 -42 

16Ö 2n AUA22-A 
~(4l "2-42 "l)-^221 

v 7o 

(61) 

Ux2  A       An2       ' 
-^-4i —^-42 
a 

£v r0 

(62) 
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(b) Determination of the out-of-plane shears q>u(x, v, i) and q>v(x, y, i) 

A set of two partial differential equations for the out-of-plane shears yu(x,y,t) 

and (pv(x, y, t) can be derived from the simplified constitutive equation, Eq. (33), i.e. 

'M 

P 

R 

C X 0 

X W 0 

0     0    R 

K V" 
<t> - P! 

.i. 0 
(63) 

and Eq. (36) and (37). An analysis of their nonhomogenous terms motivates the search 
for a particular solution of the form 

/ \     rr       .    nx ny 
9u (*> y> 0 = Usc sin — COS -— + Ucs COS 

nx       ny    T7 nx  .   ny 
■ TT    --- —sin — 

a        b a 
nx 

a 

b 
ny 

<pv (x, y, t) = Vsc sin — cos -f- + Vcs cos — sin — 
o a o 

Accordingly, the vectors P, </> , and R can be expressed as 

nx  .   ny    n nx 
+ Prr cos 

a b     ~cc        a 
nx 

a 

~f     \  r,   ■ nx ■ ny   n      nx    ny P\x,y,t) = P.. sin — sin —+ PCC cos—cos — _v ,s   i   -ss        „ b     ~ a b 

0 [x, y,t) = (/) ss sin — sin -7- + <p Cc cos — cos 
ny 

T - 
nx 

a 

ny 

ny 

nx      ny nx .   ny 
R (x, y, t) = Rsc sin — cos — + Rcs cos 

a 
— sin 
a        b 

(64) 

(65) 

(66) 

(67) 

(68) 

Introducing the partitioned vector Rp = 

are equivalent to 

RT RT 
—cs —sc 

AssPss+AccPcc-Rp=0 

it can be seen that Eq. (36) and (37) 

(69) 

where 

'IS 

n Ia 

0 

0 

0        0 

0     nla 

0     nib 

0      nib      0 

and ACC = 

0 

0 

-nla 

0 

0 -nib 

■nib 0 

0 0 

0 -nla 

(70) 

Further, the constitutive relation, Eq. (63), is equivalent to the equations 

lcc=<lXKcc+W(l)'cc 

(71) 

(72) 

where 

K ss 

2       2 

a2   b2 

-iT 

and £ss ~ 0 0 
~a~b 

(73) 

Moreover, from the definition of <f> , Eq. (30), it is found that 
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lss=-AT
ssRp lcc=-£cäP- (74) 

Then, combining Eq. (69), (71), (72), and (74) yields the system of algebraic equations 

R    = q [ASS X KSS + Acc XKCC\- Sg T0 Ass fj.    (75) ASSWAT
SS+ACCWAT

CC+R7 

with 

R2=        ~   • (76) 
L°    R. 

Once the coefficients Usc, Ucs, Vsc, and F„, stacked in the vector Rp have been 

determined from Eq. (75), the particular solution for the out-of-plane shears <pa(x, y, t), 

and <pv(x, v, r) is available from Eq. (64) and (65). Further, the corresponding moments 

can be evaluated from Eq. (63) as 

M[x,y,t) = M.. sin — sin —+ M„ cos—cos-— (77) 
—v        '   —ss       a        b     ~ a b 

where 

Mss =qCKss+x(ss -Sg T0 9 = qCKss - X AT
SS Rp -Sg TQ 9 (78) 

Mcc = q CKCC +X(cc=q CKCC - X AT
CC Rp . (79) 

The above derivations focused on the particular solution for the out-of-plane 
shears (pu(x,y,t), and q>v(x,y,t). To complete the solution, it remains to assess the 

boundary conditions and to determine a corresponding homogenous solution for these 
functions. Considering first the boundary conditions, it is readily seen that they do not 
come from the in-plane considerations since the contributions of cpw(x, y, t) and 

q>v(x, v, t) to the displacements and strains vanish on the mid-plane (z = 0) where the in- 

plane constraints are imposed. Rather, the necessary boundary conditions must come 
from: 

(i) the variational formulation, i.e. SV = 0 
(ii) transverse motion requirements. 

In addition to Eq. (36) and (37), the minimization of the potential energy yielded two 
boundary terms which should also vanish. This situation occurs when: 

either <pu is fixed or Px = 0 and either (pv is fixed or Pxy = 0     on x = 0 and a     (80) 

and 
either <pu is fixed orPxy=0 and either <pv is fixed or Py = 0      on y = 0 and b .   (81) 

Further, the simply supported nature of the plate implies that the moments at the supports 
should vanish, that is 

Mx=0 onx = 0anda (82) 

and 
My=0 onv = 0and6. (83) 

It is clearly seen from Eq. (64)-(66) and (77) that none of the boundary conditions (80)- 
(83) is pointwise satisfied by the particular solution derived above and thus it should be 
necessary to determine an appropriate homogenous solution. The discussion conducted in 
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connection with the homogenous part of the in-plane problem can be repeated here to 
demonstrate that such a solution is very unlikely to admit a closed form expression. A 
first strategy to resolve this issue is to restrict the current analysis, as in the in-plane 
problem, to plate configurations in which boundary conditions are satisfied exactly by the 
particular solution presented above. This situation occurs if the terms X]6 and X2ß 

vanish, as is the case in cross-ply laminates. Indeed, it is then found that Usc =VCS=0 so 

that 
px = 0 (pv = 0 Mx = 0 on x = 0 and a     (84) 

py = 0 Pu=° My=0 on v = 0 and b.     (85) 

In considering the boundary conditions, it should be noted that the imposition of #>v = 0 

and/or cpu = 0 at the plate supports does not imply that the in-plane displacements will 

vanish there since the terms z—- and z—- are in general non-zero. Thus, it is 
dx dy 

unclear that constraining the values of (pu and cpv at the edges of the plate would be 
representative of a typical simple support configuration. Rather, it would appears that the 
most physical boundary conditions for the present problem would be 

px = 0 Pyy = 0 Mx = 0 on x = 0 and a     (86) 

Py=0 Pxy=0 My=0 onv = 0and&.     (87) 

Further, note that the above constraints are all natural boundary conditions, i.e. they are 
not related to the geometry of the problem but rather arise through the variational 
formulation. Thus, the satisfaction of these conditions is desired to obtain the best 
approximation to the exact solution but it is not absolutely required as were the in-plane 
constraints, Eq. (47). Finally, note that if Eq. (86) and (87) are not satisfied pointwise, 
they are matched in average along the sides x = 0, a and y = 0, b. On the basis of these 
comments, it is suggested, as an alternative approach to requiring X^ and X2e to 

vanish, to require that the natural boundary conditions be satisfied only on average and to 
let the variational formulation find the best approximation possible to the transverse 
response problem. 

2.2.2 Determination of the governing equation for the transverse displacement, q(t) 
The   mathematical   developments   presented   in   the   previous   section have 

demonstrated that the search for a transverse response of the plate as 
^,y,t)^qit)wQ{x,y) (88) 

must be accompanied by corresponding approximations of the functions u0(x,y,t), 

v0(x, y, t), <p„(x, y, t), and cpv(x, v, /) of the form 

"o (*» y> 0=i2 uo{x, y)+°v To «o (*> y)+To "o (*» y) (89) 

v0(x, y,t) = q2v0(x, y) + 5v T0 v0(x, v) + T0 v0(x, y) (90) 

<pw(x, y,t) = q cpw {x, y) + Sg T0 (pM(x, y) (91a) 

<pv(x,y,t)=qqv(x,y)+bg T0 §v(x,y) (91b) 
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where the functions ü0(x,y), ..., q>v{x,y) are known from the solution of the in-plane 
problem. Introducing the above expressions in Hamilton's principle, Eq. (14), results, 
after some algebraic manipulations, in the differential equation 

M q +q- 
ab 

00 

tf, 
(dw0) (dw0^ 

V dx j 
+ N, 

V Qy j 
+ 2N xy 

fdwn Vdvfn N 

V & J dx V ux j 
dy dx 

ab 

11 
00 

M, 
dfl- \ 

O   WQ 

dx2 
+ M, 

(' &- ^ O   WQ 
+ 2M xy 

f*2-  } 
O   WQ 

dxdy 
dy dx 

(92) 

p(t) = 0 

where M and p(t) are the modal mass and force, respectively, defined as 
ab A/2 

M=J{ J p 
0 0-A/2 

'8WQ} 2 (dWQ^ 

V & J 
+ z' 

V dx j 
+ Wr dz dy dx- — y 4 

.2 (_2 2} 
1 + 

h_ 

12 a       b 

A/2 

\pdz 
-A/2 

and 
ab 

pit) = | J p(x, y, t) w0 (x, y) dy dx 

(93) 

(94) 

00 
Note that the expression for the mass given in Eq. (93) includes the effect of the rotary 

dwn 6WQ 
inertia associated with the pure bending rotations and ——. 

dx dy 

Introducing the expressions for the forces N and moments M given by Eq. (52)- 
(54) and (77) in Eq. (92) yields the governing equation for the transverse displacements 
in the form 

M q + {k0 + kx 8V T0 + k2 T0)q + y q3 = p0 + pit) 

where 

kn = 

Jfei = 

ab_ 

T 
ab 

"      .A *       AA l7t       U 
~y Mxss0 + -Ö- Myss0 7- M 

a2 b2 ab 

In" 

a2b2 
(A02i +A2oi)- 

V\7t V2ft 

xyccO 

2 

4a' 4b' 

Ir ab 
ko =  

2 2 V\7t       v2n 

a 

ab In" 

a2b2 
(A02Q +^200) + 

n   Can     ft   C -60 50 

a 

ab 
Po=-T 

' J* J2 
-y Mx«i + ~y M^i 

2TT 
•M xyccl 6„r0 

(95) 

(96) 

(97) 

(98) 

(99) 

(100) 
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In the above expressions (Eq. (96) and (100)), the symbols Mxss0 and Myss0 are the 

first two components of the vector M_ss0 which corresponds to the q related terms of 

M^,see Eq. (78). The moments Mxss\ and MyssX are similarly defined from Mssl 

which is associated with the terms in Sg T0 of Mss. Finally, the quantities Mxycc0 and 

Mxyccl are obtained in a similar fashion from Mcc, Eq. (79). 

2.2.3 Validation and Some Numerical Results 
The mathematical developments presented in the two previous sections were 

validated by comparison with previously published results. In this respect, it should first 
be noted that the present higher order shear deformation plate theory formulation 
(HSDPT) naturally reduces to both the first order shear deformation plate theory 
(FSDPT) and the classical laminate plate theory (CPT) under the following assumptions: 

HSDPT -» FSDPT: H(z) = z  and   R=A    X=W=C      ^ = 8 (101) 

HSDPT H> CPT: H(z) = 0   and   R =X= W = 0      // = 0 . (102) 

The present formulation was first validated by comparing the expressions for the 

parameters k0, kx, k2, y, and pQ obtained under the assumptions of Eq. (102) for a 

single layer isotropic plate with published CPT results (see Lee, 1993). After some 
algebraic manipulations, the exact values were recovered as 

n4h3 k 2+b2j E 

48 a3b3 

n2 h fei±*!) 
32        ab 

ki =-a E 

n2 h[a2 +b2)   E 

ab 

71 h E 

64 a3b3 1-v2 
\l-v2)[a4 +b4)-l(aUb4 +2va2 b2) 

(103) 

(104) 

(105) 

(106) 

(107) 
48 ab        1-v 

where a, E and vare the coefficient of thermal expansion, Young's modulus and 
Poisson's ratio, respectively. 

Next, the composite plate investigated by Kavallieratos (1992) was considered 
and the present CPT results were found to yield the values of the natural frequency 

(■Jk0/M I2n= 64.2695 Hz) and buckling temperature (-k2/k0= 9.352°F) stated by the 

author. 
The validation of the FSDPT and HSDPT formulations was accomplished by 

comparing the results obtained by the present approach with those published by Reddy 
and Phan (1985) for three of their cases. Case I and II relate to single layers of a material 

pQ=a 
n2 h2(a2

+b2 
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that is isotropic (for case I) and orthotropic (for case II) while in case III the plate is a 4 
layer [079079070°] composite. In all three cases, a = b = 10/z. Shown in Table 1 is a 
comparison of the natural frequencies obtained by Reddy and Phan (1985) and by the 
present formulation. Note, in the work of Reddy and Phan, that the inertia associated with 
the in-plane displacements u0(x,y,t), v0(x,y,t) and shears (pu(x,y,t), <pv(x,y,t) is 
included. Thus, a perfect equality of results should not be expected but the close matching 
shown in Table 2.1 indicates that these inertia terms affect only slightly the transverse 
deflections as assumed here. 

Table 2.1. Comparison of dimensionless frequencies obtained by Reddy and Phan (1985) 
and by the present formulation. Square plate with alh = 10. 

CPT FSDPT HSDPT 
Reddy & Phan 

(Case I, Table 1) 
Present 

0.0955 
0.0955 

0.0930 
0.0934 

0.0931 
0.0930 

Reddy & Phan 
(Case II, Table 2) 

Present 
0.0493 
0.0492 

0.0474 
0.0476 

0.0474 
0.0473 

Reddy & Phan 
(Case III, Table 3) 

Present 
18.652 
18.738 

15.083 
15.535 

15.270 
15.054 

Having validated the accuracy of the present formulation, it was desired to 
investigate the effects of plate thickness and shear deformations on the transverse 
deflections. It was first observed that only the coefficients k0 and pQ are affected by the 

choice of plate theory (CPT, FSDPT, or HSDPT) as the remaining ones depend solely on 
the in-plane stress field. Table 2.2 and 2.3 present the values of k0 and p0 for different 
variations of the plate considered by Kavallieratos (1992) composed of eight layers 
oriented at [07457-45790°]s. The geometric and material properties were selected as a = 

20 in., b = 8.2 in., /> = 1.30210"4 lb-sec2/in4, Eu =18.6 106 psi, E22 =2.0 106 psi„ 

Gn =0.8 106 psi, and vn =0.31. The values of the shear moduli G13 and G23, which 
are required by both the FSDPT and HSDPT, were not specified by Kavallieratos and 
thus they were selected equal to G12. The plate thickness which was selected by this 
author as h = 0.0416 in. (or blh = 197.12) was varied here to yield different ratios blh, 
specifically blh = 197.12, 50, 20, and 10. The different values of k0 and p0 are 

summarized in Table 2.2 and 2.3, respectively. 
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Table 2.2. Values of the stiffness k0 according to different theories 

and for different thicknesses 

b/h CPT FSDPT HSDPT 

197.12 36.212 36.206 36.204 

50 2218.76 2212.77 2210.77 

20 34668.10 34091.88 33903.71 

10 277344.77 259844.26 254498.47 

Table 2.3. Values of the force pQ according to different theories 

and for different thicknesses 

b/h CPT FSDPT HSDPT 

197.12 0.009336 0.009334 0.009334 

50 0.1451 0.1447 0.1446 

20 0.9069 0.8914 0.8869 

10 3.6275 3.3921 3.3287 

It is seen from the above tables that the three theories yield similar values of k0 and p0 

as long as b/h remains larger than 50 or so. As this ratio decreases, the difference between 
the classical plate theory and the shear deformation formulations steadily increases. At 
b/h = 10, the classical plate theory is approximately 10% away from HSDPT while the 
two shear deformation formulations differ from each other by only 2%. 

2.3 Panel Displacement-Stress Relations 
The structural dynamic modeling of composite panels accomplished above has 

focused on the determination of the differential equation for the dynamic response, i.e. 
the variable q{t). In addition to this equation, the estimation of the fatigue life of these 
panels requires also the stress-displacement relations which are obtained as follows. First, 
the stresses at a certain depth z, a(z), are related to the corresponding strains s(z) 

through Eq. (8). Next, the strains s(z) must be expressed in terms of the single modal 
displacement q{t). This second step is accomplished by relying on the strains, curvatures 

and shear related terms s°, K, $, and 0 defined in Eq. (28)-(30). Specifically, it can be 

shown that 
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0 

s(z) = G{z) 

e 

K 

i 
(108) 

where the 6x11 matrix G(z) is 

G(Z) = 

1 0 0 z 0 0 0 0 H(z) 0 

0 1 0 0 z 0 0 0 0 H(z) 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 H'(z) 0 0 0 

0 0 0 0 0 0 0 H\z) 0 0 

0 0 1 0 0 z 0 0 0 0 

0 

0 

0 

0 

0 

H(z)_ 
(109) 

o ' It remains then to express the four vectors s  , K , 0, and ^   in terms of the 

modal displacement q(t). To this end, note from previous developments, i.e. Eq. (33), that 

s°=A-1 N + N (110) 

in the case of a symmetric composite. This relation provides a direct connection between 

s ° and q(i) since the vector Nl and the matrix A are independent of this quantity, see 

Eq. (27) and (31), and the components Nx, Ny, and N^ of N are specified by Eq. 

(52)-(54). Accordingly, the vector s° can be expressed as the sum of a constant term and 

a quadratic component in q, i.e. 

Turning next to the curvatures, K , the assumed transverse displacement 

w0(x,y) = q sin— sin— (112) 
. nx . ny 

flsin — sin — y       a b 
implies that 

K = q 

n.vx.ny 
— sin— sin — 
a2        " b 
n2   .   nx   .   ny 
— sin— sin — 
b2        a b 

<■>    2 in nx        ny 
 cos— cos — 
ab a b 

(H3) 

Finally, the shear related terms  <f> and ^  are readily evaluated from Eq. (64), (65), and 

(67) where the vector R    is obtained by solving the system of equations (75). These 

relations demonstrate that both <f> and <p depend linearly on q, i.e. 
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£ = £0
+£l<] and I =l0 +lY  q. (114), (115) 

Then, combining Eq. (8), (108), (111), and (113)-(115), it is found that the stress 
vector at any point can be expressed as 

<I = CEo +^l # + ^2 Q' 
(116) 

2.4 Non-Dimensionalization of the Structural Dynamics Equations 
In order to compare the effects of the acoustic excitation on different composite 

and isotropic panels, it is convenient to first rewrite the governing equation for the 
transverse displacement q and the stress-displacement relations in dimensionless forms. 
For the former, consider the differential equation, Eq. (95), and introduce the 
dimensionless displacement q and time r defined as 

q = l- (117) 
in 

and 
t^Or (118) 

where 6 is an appropriate time constant. Introducing these new variables in Eq. (95) 
leads to 

v   e2 ,  h    ^   4e2y//2 „3   02A>^ e2    /fi \ 

where 

s = : ^0 

(119) 

(120) 

is the ratio of the panel temperature to the buckling temperature. Equation (119) is of the 
same form (without the damping term) as the one considered by Lee (1993) in connection 
with isotropic panels provided that 

—-k0=con = 
M '0 

.2\ 
1 + 

a 

Accordingly, the time parameter 6 will be selected as 

[M 
e »? 

\ a 

(121) 

(122) 

J 

Then, the nonlinear term is y q   with 

402yh2 

M 
and the constant effect of the temperature gradients is 

- _e2p0 
Po~2Mh- 

Finally, the normalized acoustic excitation p(r) can be written as 

(123) 

(124) 
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*>- wip{ßT) (125) 

so that its power spectral density is 

S^)=^^-^=T^M*J-       (126) 

Note in the isotropic case that the above expressions reduce to the relations 
obtained by Lee (1993) and used in the previous reports. Accordingly, it is desired that 
the normalization of the stress coefficients also yields their isotropic forms which were 

n2h2 

obtained by factoring the common term E ——. Paralleling this effort, let 
b 

^ = Eeq^-(c0 + clq + c2q
2) 027) 

b 
where the coefficient vectors C0, Cx, and C2 are defined as 

it   Eeqh 

C,=-^-2l (129) 
n   Eeqh 

and 

4 b2 

C2=-^—g:2   . (130) 
n   Eeq 

To complete this normalization, it remains to specify an "equivalent" Young's modulus 
Eeq. Relying on the definition of k0 for isotropic panels, it is suggested here that 

Eea=^T      ,gV    v,(l-"l2V2l)*0- 03D 
*4

hl(a2
+b2J 

2.5 The Prototypical Equation 
The derivations of the previous sections have demonstrated that the structural 

dynamic response of the panels, composite or isotropic, is governed by the same 
equations, i.e. 

q + l^q + c»2 {\s)q + yq3 =p0 +p(t) (132) 

for the displacements and Eq. (127) for the stresses. Accordingly, most of the ensuing 
discussion will focus on a single example of application without lack of generality. 
Specifically, the clamped isotropic titanium plate already investigated by Vacaitis 
(1994) will be reconsidered here. The dimensions of the panel were selected as a = 8.2 
in, b = 20.0 in, and h = 0.06 in. The acoustic excitation was assumed to be a white noise 
random process (uncorrelated fluctuations over time but fully correlated over space) of 
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spectral density S0 =-<L\0SPLno where p0 =2.910 9 psi is the reference pressure 
271 

and SPL denotes the sound pressure level in dB. The panel was assumed to be subjected 

to a uniform temperature increase of T0 so that the constant term pQ in Eq. (132) 

vanishes. Then, in their dimensionless forms (see Lee, 1993), the parameters of Eq. (132) 
and (127) can be expressed as 

)2=I*(ß4
+2ß2/3 + l) (133) co; 

s = T0 (134) 

,^{P2+ß-2+2v+^-v2f^2
+ß-2K4+ß",r+(v+ß-,y"24+4ß-1}' 

.         .         (ß4
+2ß2/3 + l)T 

C0{x,y,z) = --*- — LTQ 

3(l-v2)(ß2
+l) 

,         >.       16 z ß2 cos2Ttxsin2 71^-vsin2 7IXCOS2TC>') 
Cx{x,y,z) = *  

3(l-v2) 

/ v     2 (ß2+v)     32 fß2 COS27CV    ß2 COS4TIV 1 

(135) 

(136) 

(137) 

(138) 

32 

9 

cos27o; COS2TI v    cos27tJccos47TV    cos47ix COS2TTV 

2^3 + ß-1f (ß+4ß-]f 4(4ß + ß-Jf 

where ß = ö/a, x = x/a, y = ylb, z = z/h. Further, the damping ratio C, and Poisson's 
ratio v were set to 0.01 and 0.34, respectively. Finally, in the above dimensionless form 

the power spectral density of the white noise pressure term p(t) is expressed as 

( A > 
S— =144 

PP nh 
Lvi 4Sr 

9 e 

where 

12 1 UP*! 

(139) 

(140) 
n*       Eh' 

The numerical integration of the equation of motion, Eq. (132) proceeded as 
follows. First, an estimate of the time scale in the fluctuations of the process q(t) was 

obtained by considering the undamped linear natural frequency co0 and a time step of 

0.2/coo was set for the numerical integration of Eq. (132). This selection implied a 
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maximum (Nyquist) frequency (see Oppenheim and Schäfer, 1975, for a discussion) of 

oo^ = 5 rc oo0 so that both the acoustic excitation p{t) and its corresponding panel 

response q{t) were defined in the frequency interval ooe[- co^oo^]. Then, the constant 

value of the acoustic loading in the rih time step, pn, was generated according to its 

specified power spectrum (see Mignolet, 1993, for some fast algorithms to accomplish 
this computation). If the excitation process is white noise with constant power spectral 

density S0, then the samples pn form a sequence of independent random numbers with 

common mean, E pn ■ 0, and variance  E 
-2 
Pn = 1071000 50. Next, Eq. (132) was 

numerically integrated with the specified time step by a Runge-Kutta-Verner of orders 
five and six (IMSL routine DIVPRK). Finally, the discrete values of the response 
deflection q(t) were used to produce the time histories of the stresses according to Eq. 

(127). 
The results of this numerical integration are shown in Fig. 2.2-2.13. A few 

preliminary observations can be drawn from these figures. First, note the clear 
nonlinearity of the displacement-stress relation in the neighborhood of the bottom 
buckling state. Indeed, although the displacement time histories corresponding to sound 
pressure levels of 119 and 134 dB are fairly symmetric with respect to this level, the 
stresses are not, exhibiting a definite "bottoming out". That is, during the excursions of 
the panel around this position, the stress process achieves a minimum value dictated by 
the quadratic relation (127). This peculiarity is not encountered around the top buckling 
position since Eq. (127) remains monotonic in this region. 

A different perspective on the behavior of the displacements can be gathered from 
the power spectral density plots of Fig. 2.8-2.10. In particular, it is observed that this 
spectrum exhibits only one peak at a sound pressure level of 104dB, corresponding to the 
fluctuations around the buckling states. As the SPL increases, so does the amplitude of 
the motions and the response exhibits increasingly nonlinear features, as the second 
dominant frequency shown in Fig. 2.9 for a SPL of 119dB. Note that this second 
frequency appears to be a subharmonic of order 1/2 of the "fundamental". Finally, at still 
higher SPL, see Fig. 2.10 for SPL = 134dB, the displacement process has lost its 
narrowbandedness and exhibits a single, rather wide peak. 
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Figure 2.2 Time history of the displacement, s = 1.8, SPL = 104dB 
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Figure 2.3 Time history of the displacement, 5 = 1.8, SPZ, = 119dB 

25 



Figure 2.4 Time history of the displacement, s = 1.8, SPL = 134dB 
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Figure 2.5 Time history of the stress, s = 1.8, SPZ = 104dB 
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Figure 2.6 Time history of the stress, s = 1.8, SPL = 119dB 

Figure 2.7 Time history of the stress, 5= 1.8, SPL - 134dB 
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Figure 2.8 Power spectral density of the displacement process, s = 1.8, SPL = 104dB 

Figure 2.9 Power spectral density of the displacement process, s = 1.8, SPL = 119dB 
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Figure 2.10 Power spectral density of the displacement process, s = 1.8, SPL = 134dB 

Figure 2.11 Power spectral density of the stress process, s = 1.8, SPL = 104dB 
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Figure 2.12 Power spectral density of the stress process, s = 1.8, SPL = 119dB 
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Figure 2.13 Power spectral density of the stress process, s = 1.8, SPL = 134dB 
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SECTION 3 
EQUIVALENT LINEARIZATION TECHNIQUES 

The estimation of the fatigue life of the panels can be viewed as a two-step 
process. Indeed, it is first necessary to evaluate the statistical characteristics of the 
dynamic response, i.e. of the displacement q(t) and velocity q(t) satisfying the nonlinear 
stochastic differential equation (132). In the second stage, the damage generated by the 
stresses, see Eq. (127), is then estimated from the known moments of q{t) and q{f). 

The determination of the exact values of the moments of the displacement q{t) 
and the velocity q{t) satisfying Eq. (132) and corresponding to a white noise excitation 

~p(t) is easily accomplished by relying on the joint probability density function of these 
two random variables, as given by Lutes and Sarkani (1997). The availability of this 
distribution is however rather accidental as Eq. (132) belongs to a limited class of 
stochastic differential equations for which an exact solution of the Fokker-Planck 
equation can be obtained. For example, such a closed form solution is unavailable if the 
acoustic excitation p{t) is a colored noise. Further, known expressions for the joint 
distribution of the solution of a system of stochastic differential equations, as would be 
obtained for example in a multiple mode analysis of the panel, are extraordinarily limited. 
These comments clearly indicate that the development of a general strategy for the 
estimation of the fatigue life of the panels cannot rely on exact expressions for the joint 
probability density function of the displacements and velocities. Rather, it is necessary to 
rely on an alternate, general purpose methodology for the estimation of the moments of 
q(t) and q{t). To this end, the equivalent linearization method (see Roberts and Spanos, 
1990) will be used. 

According to this methodology, the nonlinear equation (132) is replaced by an 
"equivalent linear" one of the form 

q + 2£>(o0q + keqq = p eq + p(t) (141) 

where the parameters keq and p    are selected so that Eq. (141) represents "at best" Eq. 

(132). Specifically, these coefficients will be chosen so that the modeling error 

E. mod = E to & ~ S) V + y ?3 " P01' \keq <l ~ Peg)}' (142) 

where E[ ] denotes the operator of mathematical expectation, is minimized. 

3.1 Equivalent Linearization Strategy #1 
Proceeding with a differentiation of £mod with respect to p     and keq yields, 

respectively, 

'
2
(1-.S)U^+Y4U   -P0-keq»q+'Pe(j=0 (143) CO, 

CO, (l-s)(o2
q+\x2q)+yE[q4]  -p0 \iq -keq (o2

q + \i2q)+peq\Lq =0       (144) 
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a2
q=E 

where \xq and v2
q denote the mean and variance of q(t), i.e. n9=£[#] and 

(? - Vqf J •lt is clearly seen from Eq. (143) and (144) that the evaluation of the 

parameters keq and p requires the knowledge of the yet unknown moments u^ and 

a2 This indetermination is resolved by replacing the exact values of the mean \xq and 

variance a2 of the displacement q(t) satisfying Eq. (132) by those associated with the 

solution of the linear differential equation (141). Specifically, following standard random 
vibration arguments (see Lutes and Sarkani, 1997), it is found that 

^=4^ md G? = J   " 045), (146) q      keq 2^®0keq 

Then, the solution of the four coupled nonlinear algebraic equations (143)-(146) yields 

the values of \iq, a2, p eq, and keq. Of primary interest here are the two moments and 

thus, eliminating p    , and keq from the above equations yields 

c4(\-s)]xq+yE[q2,\  =~pQ (147) 

CO 

rt  

2 (\-s)(*2
q +]i

2
q)+yE^4]=p0 nq +^f-. (148) 

Note further that the evaluation of the mean and variance is accomplished on the basis of 
the linear stochastic differential equation (141) or equivalently under the assumption that 
q(t) is a Gaussian random process. Then, proceeding consistently, the third and fourth 
order moments appearing in Eq. (147) and (148) can be expressed as 

31  =3^02+nj (149) E 

and 
.4   , C..2     2   , .4 E *4 = 3a;+6|iX+ixJ. (150) 

In solving Eq. (147)-(150) for the required moments \xq and oq, two separate cases must 

be considered, i.e. \xq *0 and \xq =0. Since the latter condition is possible only when 

~p0 = 0, the analysis will focus separately on the panels experiencing a temperature 

gradient through the thickness (p0 ± 0) or a lack thereof (pQ = 0). 

3.1.1 Equivalent Linearization Results: PQ^O 

After some algebraic manipulations (including a multiplication of Eq. (147) and 

(148) by \ii), it is found that the mean value \iq satisfies the following sixth order 

algebraic equation 
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2y2 ^ +2y(ül {\-s)ii4q -p0 y\x3
q +3y 

(nS—\ 
PP 

2^(0Q 

   >j 

^2q+POWo(l-S)^q-PO=°- 

(151) 

Once the value of \iq has been obtained from the above equation, the variance oq can be 

evaluated from Eq. (147) and (149) as 

«? = 
p0-v2

0{\-s)iiq-yii:c 

3yu< 
(152) 

3.1.2 Equivalent Linearization Results: pQ = 0 

When ~pQ = 0, Eq. (147) admits a symmetric solution of the form \iq = 0 but this 

solution is not necessarily the only one so that the two separate sub-cases p0=0;\iq*0 

and PQ =0;\xq =0 must be investigated. 

l.l.B.l Sub-case #1: p0=0;\xq*0 

If the solution \iq = 0 is not desired, the algebraic manipulations carried out in 

connection with the derivation of Eq. (151) can be repeated to yield 

2ynJ+20,5(1-5)^+3 &M=0 (153) 

so that 

***= — 2y 
-co^ (!-,)+ lcoJ(l-.)2-6Y 

2^co0 

(154) 

Once the value of \iq has been obtained from the above equation, the variance oq can be 

evaluated from Eq. (152) as 

2     -ü>2(l-J)-Y^ 
G<7 = 

3y 
(155) 

The above solutions, Eq. (154) and (155), exhibit some very interesting features. In 
particular, in the limit of a zero acoustic excitation S-- -» 0, the mean value converges 

toward the buckling states Q\ and Q2. Further, if 5 < 1, i.e. when the thermal effects are 

not sufficient to buckle the plate, there is no positive value of \iq in Eq. (154) so that no 

solution of this type exists. Finally, the existence of \xq requires the term inside the 

71 5— 
square root to be positive,  or equivalent!/ that   a>0(l-.s)   -6y— >0.  This 

2C,ü)o 
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inequality implies that a nonzero mean is not possible when the acoustic level exceeds a 
certain threshold. Numerical results indicate that this threshold closely match the sound 
pressure level (SPL) at which the snap-throughs become very frequent. 

1.1.B.2Sub-case #2: po=0;\iq=0 

On the contrary of the mean value given by Eq. (154), the solution \iq=0 always 

exists when ~p0 = 0 since Eq. (147) and (149) are identically satisfied. The corresponding 

value of the variance is then given by Eq. (148) and (150), that is 

*    6y    V sw( 
■O>J(1-J) (156) 

3.2 Equivalent Linearization Strategy #2 
It is known (see Lutes and Sarkani, 1997, for example) that the exact probability 

density function of the displacement q(t) is bimodal for all values of the sound pressure 
level, or equivalently for all values of S—, provided that  s>\. The equivalent 

linearization formulation developed above is consistent with this property as long as there 
exist mean values satisfying Eq. (151) or (154). For larger values of the sound pressure 
level, however, the above equivalent linearization fails to accurately capture this property, 

for example, for ;?0 =0 and S~~ large enough the only acceptable mean value \iq is 

zero and the bimodal character is lost. To recover this important property, it is suggested 
here to proceed with a different equivalent linearization formulation in which the mean is 
imposed to be different from zero and the standard deviation is obtained to minimize the 
modeling error of Eq. (142). Physical arguments motivate the selection of the imposed 
mean values to be the buckled states, i.e. \iq = Q\ or \xq = Q2, where 

(a, (l-j)ß/ + YÖ/3=0        Q,*0     /=1,2. 

Accordingly, Eq. (145) requires that 

Pea=keaQi ■eq     "-eq 

so that the modeling error, Eq. (142), can be rewritten as 

'2(l-s)q + yq3 -pQJ-keqiq-Qi)] ymod = E CO 0 

(157) 

(158) 

(159) 

Differentiating the above expression with respect to the remaining parameter, keq, yields 

the equation 

o2
0(\-s)E[q{q-Qi)]+yE[q3(q-Qi)\-keqE[{q-Qi) = 0. (160) 

Then, using Eq. (146), (149), and (150), it can be shown that the above relation reduces to 
the following equation for the variance of q, 

%S— 
3Y<4+[3YÖ?+<öJ (1-4* PP 

2^©o 
= 0 (161) 
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the solution of which is 

^yQi+^2
0{l-s)}+j[3yQf+<o2

0{l-s)}2 +6Y 

71 S  
PP 

CT2= L_^ . (162) 

Note that this solution always exists for s > 1 as expected from the bimodal character of 

the exact probability density function. 

3.3 Numerical Results 
The prototypical problem analyzed in the previous section was reconsidered here 

to assess the validity and accuracy of the equivalent linearization strategies. For 
simplicity, it was again assumed that the effects of the gradient through the thickness are 

negligible so that p0 = 0. 
Then, shown in Fig. 3.1 are the standard deviations of the displacement q obtained 

by Monte Carlo simulation of the fully nonlinear equation Eq. (132) and by the 
equivalent linearization strategies #1 and #2 for 5 = 1.8 as a function of the sound 
pressure level (SPL) in dB. The behavior of the Monte Carlo results is particularly 
informative, at very low SPL the panel vibrates with a very low amplitude around one of 
the buckled states. Since these two positions are equally probable and equally distant 
from the undeformed position q = 0, the overall mean is zero and the corresponding 
standard deviation should be very close to Q\, as confirmed by Fig. 3.1 (for 5 = 1.8, Q\ = 
0.448). As the sound pressure level increases however, two different phenomena occur. 
First, the level of vibration around the buckled states increases slightly and 
unsymmetrically, i.e. the vibrations are larger toward the undeformed position because of 
the decreased local stiffness exhibited by the restoring forces. This lack of symmetry of 
the response induces a decrease of the mean displacement of the motions around each of 
the buckled states, i.e. |j.j <Q\. The second effect is the appearance of snap-throughs, 
although very infrequent at first, that populate the region in between the two buckled 
states. Both of these factors imply the decrease of the standard deviation seen in Fig. 3.1. 
This process continues until the response becomes dominated by the snap-throughs in 
which case an increase in the excitation level mainly induces an increase in the level of 
response, i.e. the maximum displacement away from the undeformed position. 
Correspondingly, the standard deviation then starts increasing as a function of the sound 
pressure level as shown in Fig. 3.1. These observations would tend to confirm the earlier 
conjecture that the motion at low SPL is governed by the fluctuation processes only while 
at high excitation levels it is the snap-throughs that dictate the panel response. More 
importantly, it would appear that the region in which both of these processes are 
important is quite narrow and is located near the minimum of the standard deviation. 
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Table 3.1. Maximum value of the sound pressure level for which nonzero mean 
equivalent linearization solutions exist as a function of temperature s. 

s 1.05 1.8 3 5 
SPL (dB) 97 120 129 135 

Considering next the equivalent linearization results, note first that when nonzero 
mean solutions exists, the corresponding overall standard deviation can be computed as 

q    V2 
I(u2+<j2+^+a2) (163) 

Next, on the basis of physical arguments, the equivalent linearization results 
corresponding to the first approach were obtained for "low" SPL, i.e. for sound pressure 
levels lower than the threshold values given in Table 3.1, by the combination of the 
models associated with nonzero mean values \iq closest to Q\ and Q2. However, when 

the excitation was large enough that no real solution of Eq. (154) could be obtained, the 
zero mean model characterized by the variance of Eq. (156) was used. The results of Fig. 
3.1 clearly demonstrate that the combination of the two nonzero mean solutions yields an 
extremely accurate estimate of the overall standard deviation but that its zero mean 
counterpart (for SPL > 120 dB) can severely underestimate this moment although the 
accuracy appears to be improving as the sound pressure level increases past the 
fluctuation to snap-through transition region. Figure 3.1 also demonstrates that the second 
equivalent linearization strategy is not as reliable as the first one except for 
SPL > 120 dB. In fact, it exhibits the wrong trend in the low sound pressure level regime, 
the estimated standard deviation increases as a function of the SPL. This undesirable 
property is associated with the fixed value of the means \it =Qt which does not allow 
the good modeling of the unsymmetry of the local stiffness discussed above. On the basis 
of these results, it is suggested to use the equivalent linearization strategy #1 when 
nonzero means exist and to rely the second strategy when such solutions are not possible. 
The above trends occur consistently through the investigated range of temperatures 
se[\,5]. 

It should further be noted from Fig. 3.1 that the average of the standard deviation 
estimates corresponding to the equivalent linearization strategies 1 and 2 approximates in 
fact remarkably well its exact counterpart for SPL > 120. A similar accuracy has also 
been observed at other values of the temperature 5 indicating that this averaging could 
consistently be used to refine the equivalent linearization estimates. 

A different perspective on the reliability of the equivalent linearization techniques 
can be obtained by comparing the produced probability density functions with their exact 
counterparts. This comparison is presented in Fig. 3.2-3.7. Note first that the improved 
accuracy of the standard deviation estimate obtained from the equivalent linearization #1 
at "low" SPL is obtained by allowing a mean shift of the corresponding distribution. This 
effect is small but apparent, see Fig. 3.2 for SPL = 114dB and s = 1.8. This shift 
increases with the sound pressure level and provokes an undesirable error in the 
prediction of the location of the peaks of the probability density function, see Fig. 3.3 for 
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SPL = 119dB. The equivalent linearization strategy #2, on the contrary, maintains the 
location of the peaks at the buckling states as shown in Fig. 3.4 but overestimates the 
height of the peak. Note also that both methods fail to capture the probability of crossing 
the origin, i.e. of the occurrence of snap-throughs. 

At higher SPL still, the equivalent linearization strategy #1 fails to produce a non- 
zero mean solution resulting in a substantial overshoot of the probability of crossing the 
origin, see Fig. 3.5. Although the second equivalent linearization approach appears to 
capture quite well the exact probability density function for this condition, as shown in 
Fig. 3.6, it also will produce single peak distribution as the sound pressure level continues 
to increase or equivalently as the temperature decreases, as can be noted from Fig. 3.7. 
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Figure 3.1. Standard deviations of the response as functions of the sound pressure level 
obtained by simulation and by the equivalent linearization strategies #1 and #2 for s = 1.8. 
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Figure 3.2 Probability density functions of the displacement, exact (---) and estimated 
according to the equivalent linearization #1 (+++), s = 1.8, SPL = 114dB. 
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Figure 3.3 Probability density functions of the displacement, exact (---) and estimated 
according to the equivalent linearization #1 (+++), 5=1.8, SPL = 119dB. 
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Figure 3.4 Probability density functions of the displacement, exact (—) and estimated 
according to the equivalent linearization #2 (ODD), S= 1.8, SPL = 119dB. 
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Figure 3.5 Probability density functions of the displacement, exact (---) and estimated 
according to the equivalent linearization #1 (— ), s = 1.8, SPL = 134dB. 
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Figure 3.6 Probability density functions of the displacement, exact (---) and estimated 
according to the equivalent linearization #2: around top buckling state ( — ) and 

combined (DDD), S = 1.8, SPL = 134dB. 
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Figure 3.7 Probability density functions of the displacement, exact (—) and estimated 
according to the equivalent linearization #2: around top buckling state ( — ) and 

combined (ODD), S = 1.05, SPL = 134dB. 
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SECTION 4 
FATIGUE DAMAGE PREDICTION 

The second predictive aspect of this investigation focused on the estimation of the 
accumulated damage by using the equivalent linearization results. That is, it was desired 
to duplicate at best rainflow results (Downing and Socie, 1982) obtained from the 
numerically evaluated displacement/stresses time histories from the mean and variances 
given by Eq. (151), (152), (154)-(156), and (162). To this end, three approaches of 
increasing complexity were investigated, all of which rely in some fashion on the 
Rayleigh approximation (see Lutes and Sarkani, 1997) and on an expected 
narrowbandedness of the response processes (displacement, velocity, stresses, etc.). In 
assessing the properties of each of these approximations, it should first be noted that the 
displacement q is not a Gaussian process because of the cubic nonlinearity of Eq. (132) 
and that the displacement-stress relationship is also nonlinear as seen in Eq. (127). Thus, 
even if the displacements were Gaussian, the stresses would not. In this light, the three 
formulations to be presented in sections 4.2-4.4 rely on the following assumptions: 

(1) both stresses and displacements are Gaussian ("standard" Rayleigh 
formulation) 

(2) the displacements are Gaussian but the stresses are not, the nonlinear 
displacement-stress relationship describes the distribution of stresses 
(nonlinear displacement-stress formulation) 

(3) the displacements are specified as the sum of Gaussian-type processes 
describing the specificities of the fluctuations around the buckled states and 
the snap-throughs. In this detailed model, the nonlinear displacement-stress 
relationship describes the distribution of stresses (phenomenological 
formulation). 

Before these three distinct approaches are described, however, an exact formula 
for the accumulated damage will be presented that was found quite useful in interpreting 
the numerical results. 

4.1 Damage Accumulated: An Exact Formula 
In assessing the damage accumulation in the panel, it is first assumed that the 

material is characterized by the S-N curve 

Nf=KS;m (164) 

where Nf is the number of cycles to failure when the stress range is Sr, and K and m 

are material constants. Further, adopting a linear damage accumulation rule, the total 
damage in the panel after a time Tßn can be estimated as 

D{T*»]= I TWJ®=-K I ^ (165) 
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where nc[Tß„) denotes the total number of half-cycles in the time interval t e [0, Tß„ 

th half-cycle. Note that this quantity can also and Sr k represents the stress range in the k 

be represented as 

Sr,k =\S(tk)-S(tk_x)\ = \(k  S(t)rfJ= f \s(x)\dx (166) 

where tk_\ and tk denote the beginning and ending times of the stress range Srj. 

Further, the last equality in the above relation holds because of the constant sign of the 
stress velocity S{t) in the interval tz[tk_\,tk}. Combining Eq. (165) and (166) in the 

special case m = 1 yields 
i     nc{Tfin) i     nc\Tfin)    , 1       ,T    , 

2K **-i 
*=1 A=l 

Moreover, relying on the stationarity of the stress velocity process, it is found that the 

expected damage accumulated in the time interval f e 0,T fin 

2K MTfl.h^i*w4*-Tfml* dx 

can be expressed as 

1 
2K 

Tfin-  (168) 

A final simplification of the above relation can be obtained by noting from Eq. (127) that 
S = q{Cx+2C2q) (169) 

where the velocity q is known to be Gaussian with mean zero and standard deviation 

Us— 
G. =    EL.  and to be independent of the displacement a (see Lutes and Sarkani, 

1997). Then, 

and the expected damage is given by 

'=E[\q\]E[\Cl+2C2 q\]=^ot £[|C, +2C2 q\] 

OqE[\Cl+2C2q\]Tfm. 
J2n K 

(170) 

(171) 

A generalization of the above relation for m * 1 is unfortunately unavailable, even 
for integer values of m . Indeed, in these cases, an expression for the expected damage in 
terms of the m point correlation of the stress velocity process can be derived by 
proceeding as in Eq. (166)-(168). However, the lack of existence of a closed form 
solution for the transition probability density function of the displacement q and velocity 
q prevents the derivation of a manageable expression for the expected damage. One must 
then resort to either rainflow simulations or to the use of approximate relations as derived 
in the next sections. 
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4.2 Damage Accumulated; "Standard" Rayleigh Formulation 
The simplest approximate expression for the accumulated damage used in the 

present investigation is traditionally referred to as the Rayleigh approximation (see Lutes 
and Sarkani, 1997). It is derived by assuming that 

(i) the stress process S(t) is Gaussian 
(ii) the stress process S(t) is narrowband (required unless m = 1). 

Under these two conditions, it can be shown (see Lutes and Sarkani, 1997) that 
1    <j, EHTßn\ -±E[AD]Tß 

2TI  as 

(172) 

where as and a^ are the standard deviations of the stress and stress velocity processes. 

Further, Elk!)] denotes the expected damage accumulated over one cycle of the stress 

process which can be estimated as 

E[AD]- 
,3/n/2 

K 
T 1 + 

m .m 

so that 

MTfi.h~ 
,3m/2 

K 
T 1 + 

m 

~2) 
aS°S 

iw-1 T fin' 

(173) 

(174) 

It is known that the Rayleigh approximation is exact when m = 1 under weaker 
conditions that the two stated above, (i) and (ii). In fact, when /M = 1, it is only necessary 
that the stress velocity process be Gaussian. This property can be confirmed by noting 
that Eq. (174) reduces to Eq. (171) when m = 1 and C2 = 0. 

The determination of the standard deviations a5 and a$ can be accomplished 

from Eq. (127) and (169). Specifically, relying on the Gaussian character of q and q, it is' 

found that 

a2 =q2 a2
q+cl (4u* +2oj)oJ +4Q C2 u, a2

q (175) 

and 

o]=o2
q[c2+4C2{i2q+a

2
q)+4ClC2^q\ . (176) 

It should be noted that this formulation is simple but it is also inconsistent: it assumes that 
both the stresses and displacements are Gaussian and, at the same time, that they are 
nonlinearly related through Eq. (127) and (169). 

4.3 Damage Accumulated; Nonlinear Displacement-Stress Formulation 
The removal of the inconsistency of the Rayleigh formulation described above 

can be accomplished by formulating the entire problem in terms of the displacement q 
which here will be assumed to be a Gaussian process (or a combination thereof). The 
approach presented below follows the non-Gaussian correction scheme introduced by 
Lutes and Sarkani (1997). For clarity of the presentation, assume momentarily that the 
displacement-stress relationship S = g(q) is monotonic (this is clearly not always the 
case for Eq. (127)) and that the response processes are narrowband. Then, it can be 

44 



argued that the positive (S+) and negative (S~) peak stresses of a given stress range 
correspond to peak values of the displacement q. Further, under the narrowbandedness 
assumption, the peak deviations from the mean displacement follow a Rayleigh 
distribution and the positive and negative maximum deviations of a given cycle are 
approximately equal. That is, 

S+ =g{vq+cqu)        and      S~ =g(\iq-aqu) (177) 

where u is a standard Rayleigh random variable. Accordingly, the expected damage 
accumulated over a cycle is 

E[AD]=- 
K 

S+ -S' 
m 

= VI   \s{vq+Vqu)-g{\iq-*qU)\m     U eXp(~ ^ /2Jdu 

(178) 
Equation (178) is not directly applicable here since Eq. (127) is not monotonic. 

Indeed,   there   exists   an   extremum   (minimum   or  maximum)   of the   stress   for 
-,2 

G and the corresponding stress is Se = CQ 
C 

■. On physical grounds, 
q ~ qe "     2 C2  "" "t"'~° ~e    ~"    4 C2 

it is expected here that the membrane stresses yield a stretching effect so that C2 > 0 and 

the extremum is always a minimum. Thus, for all values of u > ue = 
■^ 

stress process does not undergo a single cycle of magnitude S+ -S~ 

se-s- separate  cycles  of respective  amplitudes    S   -Se     and 

Accordingly, the expected damage accumulated over the cycle of displacement is 

£[AD] = ^ } \g{yiq+oqu)-g([iq-cJquj\m    uexp(-u2/2)du 
K   : J 

l<5q, the 

but rather two 

S~ -S 

+ V  J   \g(vLq+aqu)-Se\m +\g(\xq-°qu)-Se\m    U exp(-U2 / 2j du   (179) 
K J 

where 

S = g{q) = C0+Ciq + C2q
2. (180) 

Finally, relying on the expected narrowband character of the displacement process 
and the assumed Gaussian distribution of the displacement and velocity processes, the 
period can be estimated through the expected rate of upcrossing of the mean value as 

T = - 
2no 

— so that the expected damage accumulated in the time interval t e [o, Tß„ j   is 

given as 

MTfinl = 2n G„ 
E[AD] T fin- (181) 
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For example, for m = 1, Eq. (179) becomes 
f 

E[M)] = ^(C0-Se)cxp 
A. 

\ 

2a 1) 
K   l 

-|we|exp 
2a 

•7 ) 

+ <yg® 
\°c, ) 

H— Co a 

( 

K 
'2 uq 1 + 

H, 

2a <JV 

exp 
w. 

2a 
V ) 

where 

and 

C6=C0+Cm9+C2^;     Cj=C1+2C2|^;    C2=C2 

0(x)= [exp 
0 

(     2\ u 
du. 

(181) 

(183a-c) 

(184) 

As a check, consider the case C2 =0 for which qe =oo so that Eq. (182) reduces to 

£[AD] = Ci V2^— and £[jD(7>/i)] = -r=r"Fa? r> as expected from Eq. (171). 
K ^2% K- 

The case C\ =0, p.^ =0 is also very important as it corresponds to the most 

strongly nonlinear displacement-stress relationship and thus represents a good test of this 
second damage accumulation formulation. Accordingly, it is found that qe = 0 and 

Se = 0 so that 

4_ 

K 
E[AD] = ^C2G

2
g and 4^Tfi»h^Ya*<SqTjln        (185a'b) 

4.4 Damage Accumulated: Phenomenological Formulation 
The nonlinear displacement-stress formulation presented in the last section 

accounted fully and exactly for the nonlinear q to S transformation so that improvements 
over this strategy require the consideration of non-Gaussian displacements. In keeping 
with the stated goals of this investigation to obtain an estimation strategy of the damage 
accumulated that can be extended to multi-modes, it is proposed here to introduce a 
formulation based on a "combination" of Gaussian processes that is valid for panels 
statically buckled, i.e. for s>\. Specifically, in accord with the non-zero mean 
equivalent linearization strategies developed above, it will be assumed that the motion 
around each buckled configuration follows a Gaussian distribution so that the probability 
density function of q is the weighted sum of two Gaussian distributions of means exactly 
or approximately equal to the buckled states. That is, 

Pq{t)(q) = <l\   r—     exP 
^2%V\ 

w-m) 
2 a? 

+ 42 
>/27t a: 

exp 
(   ( \1^ 

\R-V-2) 

2<s\ 
(186) 

where the probabilities (weights) qx and q2 are selected so that 

#1+#2=1 and OQ (l-s)E[q] + y E Po> (187a,b) 
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i.e., so that q has a total probability of 1 and that Eq. (132) is satisfied at least on average. 

In particular when ~pQ = 0, it is directly found that qx=q2=\ll as expected. Note in 

Eq. (186) that the means Uj, \i2 and standard deviations CTJ , o2 can be estimated from 

the equivalent linearization #1 (provided solutions jal3 ja2 to Eq. (151) exist) or #2. 
Once the probability density function of q , Eq. (186), is known, it is necessary to 

evaluate the damage accumulated. To this end, it is suggested here to investigate 
separately the fluctuations around each buckled configurations and the snap-throughs 
from one such position to the other. Both fluctuation and jump processes will be 
considered to be narrowband so that their corresponding damages can accurately be 
estimated by Rayleigh's formula, 

E[D(Tfln)\ = nE[*D] (188) 

where n is the expected number of cycles occurring in the time interval of length Tßn. To 

exemplify the determination of the damage per cycle, E[AD], and the number of cycles n, 

consider a half-cycle of motion with q(tk_x) > q(tk ) and note that there are three distinct 

possibilities for the displacement time history, i.e. 
(a) fluctuation around the top buckled state 
(b) snap-through from top to bottom buckled state 
(c) fluctuation around the bottom buckled state 

as depicted in Fig. 4.1. To evaluate the likelihood of each of these three trajectories, it is 
first necessary to estimate the probabilities p\ and p2 that the peak displacement 

q(tk_\) is around the top and bottom buckled states, respectively. To this end, assume for 

simplicity that pQ = 0 and introduce the probability of snap-through p so that the 

probabilities of the trajectories (a)-(c) are 
pa=Pl(l-p)        Pb=P\P      and     Pc=P2- (189a-c) 

Accordingly, the probability that the valley of the half-cycle be located near the bottom 
buckled state is p^ + pc which should also equal to px since the displacement process q 

is symmetric when /?0 = 0. It is then required that 

Pb+Pc=Pl P + P2=P\- (19°) 
Since the total probability for the peak location must equal 1, one also has the condition 

P\+P2=\ 091) 
and the solution of Eq. (190) and (191) yields 

P!=—^— and P2=——■ (192a,b) 
2-p 2-/7 

In fact, the peak to valley transition process has been represented as a Markov 
chain with a transition probability p which need now be evaluated. This determination 
requires a physical characterization of the occurrence of snap-throughs. To this end, note 
that snap-throughs are associated with the existence of a softening region, see Fig. 4.2, in 
which the local stiffness is negative. The domain of attraction around one of the buckling 
states could be defined as the region in which the potential is less than or equal to the 
value at q = 0. The values QXT and Q2T bounding this region are then such that 
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\«>2
0(\-s)Q?T+

l-yQ?T=0 (193) 

from which it is found that 

,   2(ol(\-s) 
QiT=±yl y—• (194) 

Then, it is suggested that a snap-through occurs, i.e. trajectory (a) turns into (b), when the 
extreme displacement corresponding to the valley of the half-cycle, q(tk ), falls outside of 

the domain of attraction, i.e. 

feir-Mi)2 

/> = PrW*)>Öir] = exp 
o~2 
z a. 

(195) 

where the last equality holds in view of the expected Rayleigh distribution of the peak 
displacement values q(tf,). 

The combination of Eq. (192) and (195) yields the probabilities associated with 
the three possible trajectories (a)-(c). Further, the corresponding damage contributions 
£[ADfl], E[&Db], and E[ADC] can be evaluated as in Eq. (179), (180), and (182) so that 

the total damage can be evaluated as 
E\D{Tfm)\ = na E[ADa]+nb E[ADb] + nc E[ADC] (196) 

where na, nb, and nc are the number of cycles corresponding to each type of trajectory 

(a)-(c). These values can be expected to be proportional to the probability of occurrence 
of their corresponding trajectory, Eq. (189), that is 

na=pi(\-p)N     nb=pipN   and     nc = p2 N (197) 

where N denotes the total number of cycles. In turn, this quantity can be estimated from 
the total time Tßn as 

0<L +H!L +H±=T (198) 
va     v6      vc 

where the upcrossing rates vfl, vb, and vc are estimates of the frequencies of the 

narrowband trajectories (a)-(c). The Gaussian character of the motions around the 
buckled states suggests that 

1   G<* and vc= — ^- (199a,b) v 
2%   <3\ 2 TC   G2 

where a A and a „ are the standard deviations of the velocities associated with the 

fluctuations around the top and bottom buckled states and can be determined from either 
equivalent linearization #1 (provided solutions |il5 \i2 to Eq. (151) exist) or #2. In fact, 

\nS-~ 
I     PP they are both equal to the exact expression a • = J— . 

q    V2^»o 
The determination of vb proceeds similarly but in connection with the overall 

probability density function of the displacements, i.e. Eq.  (186).  Specifically, the 

48 



upcrossing rate of the undeformed panel configuration, q = 0, is given in terms of the 
joint probability density function of q and q as (see Lutes and Sarkani, 1997) 

00 

v*=vj=jv/^(0,v)<fr. (200) 
0 

Assuming that the displacement q and velocity q are statistically independent and that 
the latter random variable is Gaussian, it is found that 

v*=vJ=^(0)^L (201) 

where p„(6) is given by Eq. (186) for q = 0. Note the assumptions stated above are not 

particularly restrictive since they are known to hold for the processes satisfying either the 
exact equation of motion, Eq. (132), or any of its equivalent linearization approximations. 

Combining Eq. (197)-(199) and (201) yields estimates of the number of cycles 
na, nb, and nc corresponding to each type of trajectory (a)-(c) and completes the 
damage accumulation formulation. 

4.5 Numerical Results 
To establish baseline values the accumulated damages, the numerical integration 

of the equation of motion (132) was performed as discussed in section 2. From the time 
histories of the displacement, the corresponding realizations of the stress(es) were 
obtained through the quadratic relation, Eq. (127). Then, the rainflow cycle counting 
strategy of (Downing and Socie, 1982) was used to identify stress ranges and evaluate the 
accumulated damage over a fixed interval of Tß„= 32,000 time steps. In keeping with the 

dimensionless formulation of the equation of motion, the damage was normalized 

according to D = K 
(        i       \m 

b2 

KEeqn
2h2 j 

D. Finally, the values of the damage presented in 

these figures are in fact averages over 100 realizations of stress time histories to reduce 
the variability of the damage estimates. These 100 simulations were divided into two 
groups of 50 each with the excitation records in the second set equal in magnitude but of 
opposite sign to their counterparts in the first set. This procedure was required to ensure 
that exactly half of the simulations at low sound pressure levels would lead to fluctuations 
around the upper buckling position with the remaining half around the lower one. 

Shown in Fig. 4.3-4.10, are the normalized damages computed on the basis of the 
stress ax at the middle of either the top surface of the panel (Z = 0.5) or its neutral plane 
(Z = 0). Physically, it can be seen that this stress component is dominated, when Z = 0.5, 
by the linear bending terms, C\ q, which is completely absent when Z = 0. Accordingly, 
it can be expected that this latter situation provides a worst case scenario from the 
standpoint of nonlinearity of the displacement-stress relations. 

Turning now to the prediction approaches, the equivalent linearization strategy #1 
was used to provide the estimate of the standard deviation of the displacement process 
required by the "standard" Rayleigh and nonlinear displacement-stress formulations. On 
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the contrary, the phenomenological approach relied on the results of the second 
equivalent linearization strategy, consistently with the basis of this numerical technique. 
An analysis of these results demonstrates that both the Rayleigh and nonlinear 
displacement-stress formulations yield reliable estimates of the accumulated damage at 
"low" sound pressure levels, i.e. when snap-throughs are rare events. These estimates 
were obtained by averaging the damages corresponding to each of the two nonzero mean 
models. In effect, this procedure fully accounts for the fluctuation processes but neglects 
the damage associated with the infrequent snap-throughs. 

As the SPL approaches the threshold above which the equivalent linearization 
strategy #1 fails to yield a nonzero mean, snap-throughs are becoming more frequent and 
both the Rayleigh and nonlinear displacement-stress formulations underestimate the 
actual damage. In this condition, the phenomenological formulation provides very 
reliable approximation of the accumulated damage provided that the value of the 
probability density function pq(0), governing the rate of snap-throughs, is accurate. 

Finally, at high sound pressure levels, i.e. higher than the above threshold, it was 
found that the Rayleigh approach typically overestimated the exact accumulated damage 
and that the nonlinear displacement-stress formulation underestimated this value. 
However, the average of these two estimates (shown in Fig. 4.3-4.10 as "Final") has 
consistently been found to be an accurate approximation of the damage. 

In view of the above results and comments, it is suggested that the nonlinear 
displacement-stress formulation be used until the sound pressure level approaches the 
threshold at which the equivalent linearization method #1 stops yielding nonzero mean 
solutions. Then, in a small region below this value, the phenomenological formulation 
should be used with an accurate estimate of pg(0). Finally, above the threshold, the 

approximate accumulated damage should be obtained as the average of the estimates 
provided by the Rayleigh and nonlinear displacement-stress formulations. 

The above discussions have focused on the prediction of the accumulated damage 
associated with a specific stress component. In general however, the panel experiences a 
multiaxial state of stress and it is necessary to define an appropriate equivalent stress. 
Adopting a Tresca-type failure criterion, it is suggested here to compute the damages 
associated with the stress components ax, <sy, and ox-ay. The accumulated damage 

will then be selected as the largest of these three values. This process is demonstrated in 
Fig. 4.13-4.15 in connection to a composite panel similar to the one introduced by 
Kavallieratos (1992) and discussed in Section 2 but with dimensions a = b = 8 in. and 
different lay-ups. The damages shown in Fig. 4.13-4.15 correspond to the point at the 
middle of the panel on its top surface (Z=0.5). 
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Figure 4.1 Probability density function of the displacement showing 
the three peak to valley trajectories (a)-(c). 
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Figure 4.2 Force vs. displacement curve showing the softening region. 
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Figure 4.3 Estimates of the nomalized damage as functions of the sound pressure level 
obtained by rainflow analysis and by the various approximate methods 

for OT=1,J=1.8,Z=0.5. 
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Figure 4.4 Estimates of the nomalized damage as functions of the sound pressure level 
obtained by rainflow analysis and by the various approximate methods 

for m=l,s=1.8,Z=0. 
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Figure 4.5 Estimates of the nomalized damage as functions of the sound pressure level 
obtained by rainflow analysis and by the various approximate methods 

for OT = 2,J=1.8,Z=0.5. 
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Figure 4.6 Estimates of the nomalized damage as functions of the sound pressure level 
obtained by rainflow analysis and by the various approximate methods 

for OT = 2,J=1.8,Z = 0. 
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Figure 4.7 Estimates of the nomalized damage as functions of the sound pressure level 
obtained by rainflow analysis and by the various approximate methods 

for w = 5,5=1.8,Z=0.5. 
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Figure 4.8 Estimates of the nomalized damage as functions of the sound pressure level 
obtained by rainflow analysis and by the various approximate methods 

for ro = 3,a=0.5,Z=0.5. 
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Figure 4.9 Estimates of the nomalized damage as functions of the sound pressure level 
obtained by rainflow analysis and by the various approximate methods 

for m = 3,s=1.05,Z=0.5. 
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Figure 4.10 Estimates of the nomalized damage as functions of the sound pressure level 
obtained by rainflow analysis and by the various approximate methods 

for m = 3,s=l.S,Z=0.5. 

55 



Q> 
o> 
n 
E 
ra 
Q 
■a 
a> 
N 
w 
E 
k. o z 

80000000 

70000000 

60000000 

50000000 

40000000 

30000000 

20000000 

10000000 

0 -Eh- 

-♦— Rainflow 

-•— Rayleigh 

-ir-N.L. 
-X-Final 

 e, ©,— 

85 95 105 115 125 

Sound Pressure Level (SPL, dB) 

135 

Figure 4.11 Estimates of the nomalized damage as functions of the sound pressure level 
obtained by rainflow analysis and by the various approximate methods 

for m = 3,s=3,Z=0.5. 
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Figure 4.12 Estimates of the nomalized damage as functions of the sound pressure level 
obtained by rainflow analysis and by the various approximate methods 

for m = 3,5= 5, Z= 0.5. 
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Figure 4.13 Estimates of the nomalized damage as functions of the sound pressure level 
obtained by rainflow analysis for the lay-up [90 45 -45 0]s with m = 3, s= 1.8, Z= 0.5 

and for the stresses ax (Sx), ay (Sy), and GX - oy (Sx - Sy). 
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Figure 4.14 Estimates of the nomalized damage as functions of the sound pressure level 
obtained by rainflow analysis for the lay-up [-45 90 45 0]s with m = 3, s= 1.8, Z = 0.5 

and for the stresses ox (Sx), ay (Sy), and ax - <sy (Sx - Sy). 
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Figure 4.15 Estimates of the nomalized damage as functions of the sound pressure level 
obtained by rainflow analysis for the lay-up [45 -45 90 0]s with m = 3, s= 1.8, Z = 0.5 

and for the stresses GX (SX), GV (Sy), and a; -a y (Sx - Sy). 
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SECTION 5 
SUMMARY 

The focus of this investigation has been on the prediction of the fatigue 
life/damage of composite panels subjected to an extreme environment, i.e. to both high 
thermal effects (temperature and temperature gradients) and a strong acoustic transverse 
loading. To achieve this goal, it was necessary to accomplish the following tasks: 

(i)   develop an appropriate structural dynamic modeling of the panel 
(ii)  derive reliable approximate  expressions  for the statistics  of the panel 

response to the random acoustic loading 
(iii) formulate a prediction strategy of the accumulated damage in terms of the 

obtained statistics of the response 
All three problems were successfully addressed. First, a large displacement - small strains 
structural dynamic model of the composite panel was accomplished by relying on the von 
Karman strain expressions. Further, the formulation naturally accounts for uniform 
temperature effects as well as the presence of in-plane and transverse temperature 
gradients. Finally, a higher-order displacement field was adopted to accurately capture 
the shear effects. Consistently with the proof of concept aspect of this Phase I effort, a 
simplified, one-mode approximation of the response was derived for a simply supported 
panel. Non-dimensionalization of the resulting equation of motion revealed that the 
response of different types of panels should exhibit similar characteristics and a 
prototypical panel was considered. The analysis of its response revealed in particular that 
the panel response is fairly narrowband at low sound pressure levels when the panel 
vibrates around its buckled states. However, as the excitation level is increased, the 
nonlinear effects increase as well resulting in the appearance of a subharmonic (of order 
1/2) component of the response. Finally, at very high sound pressure levels, the power 
spectral density of the panel response exhibits a single broad peak. The nonlinearity of 
the displacement-stress was emphasized and a "bottoming out" effect in the stresses was 
observed. 

The determination of reliable approximations of the statistics of the panel 
response to the random acoustic excitation was accomplished by relying on two separate 
equivalent linearization strategies. The first of these two methods seeks to approximate at 
best the panel response by a Gaussian process of unknown mean and variance. At low 
SPL, nonzero means are indeed found that correspond to the fluctuations around the 
buckled states. Above a critical SPL, however, this approach only yields a zero mean 
approximation of the "continuous" snap-through of the panel. The second equivalent 
linearization method relies on a mean equal to the buckled states and a representation of 
the panel response is obtained as the sum of zero mean fluctuations around these 
positions. A reliable approximation of the variance of the response was obtained, at low 
SPL, by the first of these approaches alone but, at high SPL, a reliable estimate of this 
quantity is only obtained by averaging the predictions of the two equivalent linearization 
strategies. Even though accurate approximations of this moment were obtained, it was 
shown that the exact probability density function of the panel response can accurately be 
matched by sums of Gaussian distributions only at low SPL. 

The prediction of the accumulated damage in the panel was achieved by a 
combination of three methods: a "standard" Rayleigh approximation, a more detailed 
formulation taking into account the nonlinearity of the displacement-stress relation, and 
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finally a phenomenological modeling of the fluctuations around the buckled states and 
the snap-through process. When the snap-throughs occur only exceptionally, the 
nonlinear displacement-stress formulation yields an excellent approximation of the exact 
damage as estimated by an extensive simulation/rainflow analysis. However, as the sound 
pressure level is increased and snap-throughs start occurring, this approach 
underestimates the damage and the phenomenological formulation ought to be used. 
When the SPL is high enough, i.e. above the threshold at which the equivalent 
linearization strategy #1 fails to yield nonzero means, the average of the damages 
predicted by the Rayleigh and the nonlinear displacement-stress formulations was shown 
to be quite accurate over a broad range of sound pressure levels and S-N curve exponents. 

The combination of these three different research efforts provides a solid 
foundation for the prediction of the fatigue life of composite and isotropic panels of 
various shapes, support conditions and in a wide array of extreme environments. 
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